Math 821, Spring 2013

Karen Yeats

(Scribe: Wei Chen)
February, 19, 2013

Algebras

 satisfying
(1) • is associative
(2) \cdot distributes over + on the left and right
(3) \cdot is compatible with scalar multiplication. i.e. $a(\lambda b)=\lambda(a b) \forall \lambda \in k$
(4) A has a multiplicative unit. i.e. $\exists \mathbf{1} \in A$ s.t. $\mathbf{1} a=a=a \mathbf{1}$.

Lets say this more algebraically.
Definition. Let V and W be k-vector spaces. Then there is a unique pair of a vector space $V \otimes W$ and a bilinear map $V \times W \rightarrow V \otimes W$ satisfying the following property.
\forall bilinear maps $f: V \times W \rightarrow U \exists!\phi: V \otimes W \rightarrow U$ s.t. the following diagram commutes.

Note
1.) The tensor produce is a machine for turning bilinear maps into linear maps.
2.) Whenever something satisfies a universal property like that it is unique if it exists. Suppose K and L both satisfied the property then they each have $V \times W \xrightarrow{a} K$ and $V \times W \xrightarrow{b} L$ and

so α and β are isomorphisms.
3.) It would remain to show that the tensor product exists. (for details look at your algebra notes)

Take the elements of $V \times W$ and build the vector space generated by these elements. Then mod out by

$$
\begin{gathered}
\left(a_{1}+a_{2}\right) \otimes b-a_{1} \otimes b-a_{2} \otimes b \\
a \otimes\left(b_{1}+b_{2}\right)-a \otimes b_{1}-a \otimes b_{2} \\
\lambda a \otimes b-a \otimes \lambda b \\
\lambda a \otimes b-\lambda(a \otimes b)
\end{gathered}
$$

and everything it generates. Then check this works.
With this we can rewrite the definition of an algebra with $\cdot \operatorname{linear}$ from $A \otimes A$ to A instead of bilinear from $A \times A$ to A. This takes care of (2) and (3). What about (1). Write it as a commutative diagram.

$$
(\mathrm{ab}) \mathrm{c}=\mathrm{a}(\mathrm{bc})
$$

commutes.
What about (4)?
The unit tells us how to put K inside A, namely $K \ni 1 \mapsto \mathbf{1} \in A$ so $K \ni \lambda \mapsto \lambda \mathbf{1} \in A$. So the unit gives a linear map $k \rightarrow A$ call it u. Then the unit property is that

commutes.

Definition. An algebra A over K is a vector space over K with two linear maps

$$
\begin{gathered}
\cdot A \otimes A \rightarrow A \\
u: K \rightarrow A
\end{gathered}
$$

satisfying

commute.

Example. Let A be a K vector space.
Definition. (Tensor Algebra) $T A=\bigoplus_{i=0}^{\infty} A^{\otimes i}$ where $A^{\otimes 0}=K$ and $A^{\otimes i}=A \otimes A \otimes \cdots \otimes A$ with A appearing i times. This is a vector space by definition and we can make it an algebra via $\left(a_{1} \otimes \cdots \otimes a_{i}\right)\left(b_{1} \otimes \cdots \otimes b_{j}\right)=$ $a_{1} \otimes \cdots \otimes a_{i} \otimes b_{1} \otimes \cdots \otimes b_{j}$. This is called the tensor algebra. We can view it as an algebra of words. Elements are formal linear combination of words viewing $a_{1} \otimes a_{2} \otimes \cdots \otimes a_{i}=a_{1} a_{2} \cdots a_{i}$ a word with letters from the alphabet A and where the product of 2 words is their concatenation. Note if we take $T A$ and mod out by the action of the symmetric group or equivalently by the ideal of commutators then we get $S A$ the symmetric algebra which we can view as an algebra of multisets with formal + and union as the product.

Coalgebras and Bialgebras

Multiplication tells you how to take 2 things and put them together to make 1 thing. Comultiplication is the opposite, it tells you how to take one thing and pull it apart into 2 things. (possibly in more than one way)
Definition. A coalgebra C over K is a vector space over K with 2 linear maps

$$
\begin{gathered}
\Delta: C \rightarrow C \otimes C \\
\epsilon: C \rightarrow K
\end{gathered}
$$

satisfying

commute.
What does it mean to be an algebra homomorphism in commutative diagram language?
Definition. Let A and B be K-algebras and $\phi: A \rightarrow B$ is an algebra homomorphism if it is linear and $\phi\left(a_{1} a_{2}\right)=\phi\left(a_{1}\right) \phi\left(a_{2}\right), \phi\left(\mathbf{1}_{A}\right)=\mathbf{1}_{B}$.

commute.

Definition. Let C and D be K-coalgebras. Then $\psi: C \rightarrow D$ is a coalgebra morphism if it is linear and the reverse diagrams commute. i.e.

Definition. Let A and B be K algebras, then $A \otimes B$ is a K-algebra with the product $(a \otimes b)(c \otimes d)=a c \otimes b d$. i.e.

where $\tau(a \otimes b)=b \otimes a$ (transposition).
Note: not the same as the multiplication in the tensor algebra. So a bialgebra is an algebra and a coalgebra which play well together namely
Definition. Let A be a K-vector space with an algebra structure (\cdot, u) and a coalgebra structure (Δ, ϵ). If Δ and ϵ are algebra homomorphisms then A with $(\cdot, u, \Delta, \epsilon)$ is a bialgebra.

Example. The Connes-Kreimer Hopf Algebra (just bialgebras today) of rootes trees.
As a vector space a basis is the set of forest of rooted trees i.e. MSets of rooted trees.

The product denoted m is disjoint union

and so another way to think of this is as the polynomial algebra generated by rooted trees. As an element the unit is the empty tree. Write it $\mathbf{1}$ (not ϵ to avoid confusion). What about the coproduct. We need a definition. Given a rooted tree T an admissible cut of T is a set possibly empty, of verties of T with the property that no vertex in the set is a descendant of another.

c	$\{a\}$	\emptyset	$\{b\}$	$\{c\}$	$\{d\}$	$\{b, c\}$	$\{b, d\}$
$P_{c}(T)$		1	${ }^{\bullet} \mathrm{b}$	$\left\lvert\, \begin{aligned} & \text { c } \\ & \text { d }\end{aligned}\right.$	- d	b c d	b
$R_{c}(T)$	1		$\sum_{d}^{a} c$	$\left.\right\|_{\mathrm{b}} ^{\mathrm{d}}$	a		\rangle^{a}

Then the coproduct is $\Delta(T)=\sum_{c \text { admissible cut }} P_{c}(T) \otimes R_{c}(T)$ extend to all elements of the bialgebra as an algebra homomorphism.
$\Delta(\lambda)=\lambda \otimes 1+1 \otimes\rangle+\bullet\rangle+|\otimes|+$
ex
$\bullet \otimes \wedge+\bullet|\otimes \bullet+\ldots \otimes|$

References. V Reiner's notes "Hopf Algebras in Combinatorics" 1.1, 1.2, 1.3.

